Workshop Proceedings

Immunoprophylaxis against *Mycobacterium leprae* infection with subunit vaccines

*Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW; **Department of Medicine, University of Sydney, Sydney, NSW; †Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia; and ††Mycobacterial Research Laboratory, Anandaban Leprosy Hospital, Kathmandu, Nepal

Summary: We have investigated the effect of subunit vaccines against infection with *Mycobacterium leprae*, employing DNA plasmids as the vaccine vectors, and the immunodominant 35 kDa protein of *M. leprae* as the candidate antigen. A DNA vaccine that expresses the *M. leprae* 35 kDa protein both stimulated interferon-γ (IFN-γ)-secreting T cells in mice, and demonstrated protection against *M. leprae*-infection of mice.

Introduction

During the last 15 years, implementation of multidrug therapy (MDT) for leprosy has been very effective, resulting in a dramatic fall of prevalence. However, the new-case detection rate in the countries with the major disease burden has not decreased, suggesting that transmission of *Mycobacterium leprae* will continue for some time. A combination of MDT applied to active cases with immunization against infection by *M. leprae* in leprosy endemic regions may be the most effective, long-term control measure that will lead to eradication of the disease. Immunization with *M. bovis* BCG has been partially effective; a recent controlled trial of BCG against *M. leprae* infection in Malawi demonstrated 50% protection by a single administration. Although meta-analysis of a number of trials of BCG indicated a protective efficacy of approximately 50% against pulmonary tuberculosis, and 85% against disseminated tuberculosis, BCG did not confer protection against tuberculosis in the Malawi trial. There has been renewed interest in new subunit vaccines against tuberculosis, both to increase protective efficacy, and to avoid the use of a live vaccine in potentially immunodeficient subjects. Moreover, it may be possible to develop vaccines containing a limited number of antigens, which will permit continued skin testing with other mycobacterial components, to detect subsequent infection by *M. tuberculosis*. Approaches to anti-*M.
tuberculosis subunit vaccines include the use of single or combinations of secreted proteins in
adjuvant, and DNA vaccines, in which mycobacterial genes are expressed under the control
of a eukaryotic promoter. These were moderately protective against experimental M.
tuberculosis infection, and a combination of DNA vaccines expressing three different
secreted proteins was as effective as BCG against pulmonary tuberculosis in mice.

We have investigated the effect of subunit vaccines against M. leprae infection,
employing DNA plasmids as the vaccine vectors. The immunodominant 35 kDa protein of
M. leprae was selected as the candidate antigen. The gene encoding the 35 kDa protein is
present in M. leprae and M. avium, but not in members of the M. tuberculosis complex, and
monoclonal antibodies specific for the M. leprae protein formed the basis of a serological test
that detects M. leprae-specific antibodies in patients with leprosy, but not tuberculosis patients.

The recombinant 35 kDa protein, which is recognized by more than 90% of leprosy patients,
delicits a strong T-cell response in tuberculoid leprosy and an antibody response in
lepromatous leprosy, as well as delayed-type hypersensitivity in M. leprae-sensitized guinea
pigs. The DNA vaccine expressing the M. leprae 35 kDa protein both stimulated
interferon-γ (IFNγ)-secreting T cells in mice, and demonstrated a significant protective
effect against M. leprae-infection of the mouse footpad.

Materials and methods

The genes encoding the M. leprae and M. avium 35 kDa proteins were amplified and
cloned into the vector pJW430 downstream of the early/intermediate promoter of cytome-
galovirus, yielding DNA-Mav35 and DNA-ML35. The gene-sequences were confirmed by
double-stranded sequencing, and expression of the proteins was demonstrated by transient
transfection of COS7 cells and immunoblotting of cellular homogenates. The immunogeni-
city of the vaccines was tested by immunizing C57BL/6 (H-2b) and outbred Swiss albino
mice with three intramuscular injections of 100 μg of the purified DNA vaccines or the
control vector pJW430 at intervals of two weeks. BCG-immunized animals were adminis-
tered 10⁸ CFU of BCG (CSL) intradermally. Antigen-specific lymphocyte proliferation and
IFNγ-responses of splenocytes and lymph node cells were measured as previously
described. Serum antibody responses to the 35 kDa protein were measured by ELISA
using recombinant 35 kDa protein as antigen. The protective effect of DNA-ML35 was
tested by inoculating immunized Swiss albino mice with 10⁴ M. leprae into each hind footpad
4 weeks after the last immunization. Control mice were administered the DNA vector alone
or phosphate buffered saline (PBS). M. leprae were harvested from the footpads of control
mice after 6 months and each month thereafter until the organisms were found to have
multiplied to a level of at least 3.16 x 10⁵ acid-fast bacilli (AFB) per footpad. The AFB were
counted as previously described.

Results and discussion

In initial studies, we demonstrated that a DNA-vaccine expressing the M. avium 35 kDa
protein, which exhibits 95% homology with that of M. leprae, stimulated strong T-cell and
antibody responses to the 35 kDa antigen in C57BL/6 mice. It was of interest that the high-
titre, anti-35 kDa protein antibodies were directed against the same conformational epitopes
on the protein as those recognized by sera of leprosy patients. The DNA-Mav-35-immunized
H-2b mice were protected against intravenous infection with a virulent strain of M. avium,
which causes progressive infection in mice. There was a 99% reduction of the bacterial load
in the spleen, indicating a protective efficacy greater than that of BCG 4 weeks post­
challenge.12 As expected, the DNA-ML35 vaccine was also strongly immunogenic in the
C57BL/6 mice, inducing high levels of antigen-specific T cells which released the cytokine
IFNγ on restimulation.

To ensure that the protein was recognized in genetically diverse animals, the immuno­
genicity of the DNA-ML35 vaccine was tested in outbred Swiss Albino mice, which were
used to study the protective efficacy of the vaccine. Antibodies which increased in titre with
successive vaccine doses were detected in all of the mice. Six weeks after immunization with
DNA-ML35, the titre of anti-35kDa protein IgG was $3.3 \log_{10}$ compared to $1.09 \log_{10}$ in the
mice administered the control DNA vector. As shown in Table 1, the mice demonstrated anti­
35kDa T cell proliferative and IFNγ responses in the spleen and lymph nodes. There was
some variability of the level of the T-cell responses; about 60% of the mice showed high
responses comparable to those observed in H-2b mice, whereas 40% showed lower
responses.14 However, all demonstrated significant, antigen-specific T-cell responses,
compared to the mice administered the control vector.

When the mice that had been immunized with DNA-ML35 were challenged with viable
M. leprae in the footpad, they showed significantly less mycobacterial replication after 7
months than the mice that had been administered either the control DNA vector or PBS, and
the level of protection was equivalent to that induced by BCG immunization (see Table 2).
This protective effect was observed employing two different strains of M. leprae.

To investigate whether DNA vaccines expressing M. tuberculosis genes are capable of
inducing heterologous protection against M. leprae infection, we tested the protective effect
of DNA-85B, which encodes the M. tuberculosis 85B protein, against the mouse footpad
infection with M. leprae. The antigen 85 complex includes a group of three secreted proteins

| Table 1. Antigen-specific T-cell responses in Swiss Albino mice immunized with DNA­
ML35 or control vaccines |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
</tr>
<tr>
<td>DNA-ML35</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DNA-Neg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1 Mice were administered 100µg DNA-ML35 or the empty vector, DNA-Neg, intra­
muscularly on three occasions at intervals of 2 weeks, and tested 4 weeks after the last
injection.
2 Purified splenocytes were restimulated with recombinant M. leprae-35kDa protein at
the concentrations shown.
3 Proliferative responses are shown as the mean specific incorporation of ³HThymidine
in triplicate wells (±SEM).
4 IFNγ responses are shown as the mean specific release of IFNγ in triplicate wells
(±SEM) at different antigen concentrations.
Table 2. Protective effect of immunization with DNA-ML35 and BCG against mouse footpad infection with a clinical isolate of *M. leprae*

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Log₁₀ AFB/footpad (mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>5.22 ± 0.11†</td>
</tr>
<tr>
<td>DNA-ML35</td>
<td>5.11 ± 0.16‡</td>
</tr>
<tr>
<td>DNA-Neg</td>
<td>5.67 ± 0.19</td>
</tr>
<tr>
<td>PBS</td>
<td>5.74 ± 0.13</td>
</tr>
</tbody>
</table>

* Mice were administered 100 μg DNA-ML35 or the empty vector, DNA-Neg, intramuscularly, or BCG or PBS intradermally on three occasions at intervals of 2 weeks. Four weeks after the last injection, the mice were inoculated with 10⁷ *M. leprae* in each hind footpad.

† The geometric mean of the logarithm₁₀ number of AFB ± SEM harvested per footpad 7 months after inoculation.

‡ The probability, determined by the Mann-Whitney U-test, that the results from this group of mice were drawn from the same population as were those from the mice administered PBS was < 0.05.

of 30–32 kDa, which elicit strong immune responses in tuberculosis and leprosy patients. DNA vaccines expressing antigen 85A and antigen 85B induce partial protective immunity against *M. tuberculosis* infection in mice, and the *M. tuberculosis* 85B antigen shows greater than 75% homology at the amino acid level with the *M. leprae* 85B protein. Therefore, we immunized Swiss albino mice three times at 2-weekly intervals with intramuscular injections each of 100 μg DNA-85B and challenged them with two different strains of *M. leprae*. The organisms multiplied in DNA-85B immunized mice to only about 20% of their number in control mice (Roche, P. R., submitted for publication).

We are currently investigating means of increasing the effect of these subunit vaccines against *M. leprae* infection. One approach is to co-immunize with the mycobacterial DNA vaccine and a plasmid expressing cytokines, which may act as adjuvants to increase the cellular immune response to the mycobacterial antigen. Interleukin-12 (IL-12), which is produced by macrophages and dendritic cells, causes deviation of CD4⁺ T-cells to a Th1-like pattern of cytokine production. We have prepared a novel vector that expresses both the P35 and P40 chains of murine IL-12. When mice were co-immunized with DNA-Mav35 and the IL-12-producing plasmid, there was an increase of the antigen-specific production of IFNγ by lymph-node cells as well as increased clearance of *M. avium* following intravenous challenge, compared to mice immunized with DNA-Mav35 alone (Martin, E., submitted for publication). This increased protective effect is encouraging, and we are now testing whether co-immunization with DNA-ML35 and the IL-12-expressing plasmid will increase the level of protection against footpad infection with *M. leprae*.

These results suggest that effective subunit vaccines can be developed against *M. leprae* infection. One *M. leprae* antigen expressed as a DNA vaccine was moderately effective, but we envisage that a combination of antigens would be incorporated into a future vaccine, to ensure that individuals in a genetically diverse population could respond to at least one of the HLA Class II-restricted epitopes on the antigens. The inclusion of IL-12 or other cytokines
may provide more defined patterns of adjuvant activity, particularly of a Th1-like pattern. A number of other immuno-enhancing strategies are being tested, including the targeting of the DNA-encoded vaccine antigen to antigen-presenting cells, and the combination of different types of vaccine vectors to prime and boost for the required type of immune response to the vaccine antigen. How might subunit vaccines be employed against \textit{M. leprae} infection? It is more likely that a subunit vaccine for tuberculosis rather than one for leprosy will be developed and tested in humans in the foreseeable future. If this vaccine is to be used in populations with high levels of transmission of both \textit{M. tuberculosis} and \textit{M. leprae}, it will be important to incorporate some \textit{M. leprae}-specific antigens into the vaccine, as well as proteins shared by the two mycobacteria, to provide heterologous protection. This will ensure that the protective benefit of anti-tuberculosis vaccine also assists in the control of leprosy. The \textit{M. leprae} 35 kDa protein and the \textit{M. tuberculosis} antigen 85B are two appropriate candidates for this role, but a broader panel of antigens may be eventually utilized.

Acknowledgements

This work was supported by the National Health and Medical Research Council of Australia, the Cooperative Research Centre for Vaccine Technology, and The Leprosy Mission International.

References

Martín E, Roche PW, Triccas JA, Britton WJ. DNA encoding a single mycobacterial antigen protects against leprosy infection. Vaccine, in press.

