CLOFAZIMINE POTENTIATES THE SYNTHESIS OF PROSTAGLANDIN E2 BY HUMAN POLYMORPHONUCLEAR LEUCOCYTES *IN VITRO*

Sir,

In addition to its value as an anti-microbial agent, clofazimine (Lamprene, B663) in high dosage also possesses properties which are of established value in the treatment of erythema nodosum leprosum (ENL)¹⁻³ and possibly also in reversal (upgrading) reactions.^{4,5} The exact mechanisms of clofazimine-mediated anti-inflammatory and immunosuppressive activity are unknown. We have suggested previously that they may be related to the pro-oxidative properties of the drug,⁶ ie, the ability of clofazimine to stimulate polymorphonuclear leucocyte (PMNL) and macrophage membrane associated oxidative metabolism.^{6–8} In this preliminary report the effects of clofazimine on both the spontaneous and leucoattractant-stimulated synthesis of the anti-inflammatory^{9,10} immunosuppressive¹¹ prostaglandin (PG), PG E2, by human PMNL *in vitro* are described.

PMNL-enriched suspensions were prepared as previously described⁵ and resuspended to a concentration of 1×10^7 /ml in Hanks' balanced salt solution (HBSS). The synthetic chemotactic tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP, Miles Laboratories Inc, Elkhart, Indiana, USA) at a final pre-determined concentration of 0.1 μ M was used as the stimulant of

PG E2 synthesis. Clofazimine was completely solubilized using the following procedure: 10 mg of the drug was dissolved in 0·1 ml of 100% glacial acetic acid and 0·3 ml of 100% dimethyl sulphoxide (DMSO) and brought to 1 ml with 0·6 ml of distilled H₂O. The drug was diluted in distilled H₂O to a concentration of 200 μ g/ml followed by addition of 0·1 ml of 1N NaOH, filtration through a 0·2 μ m pore size micropore filter and $\frac{1}{10}$ dilution in HBSS to give a stock solution of 20 μ g/ml which was brought to pH 7 and centrifuged in a microfuge at 12,000 rpm for 3 min. Solvent controls without clofazimine were identically processed. No residual particulate material relative to control systems could be detected in the clofazimine stock solution by a laser nephelometric procedure. The effects of clofazimine on the spontaneous and stimulated synthesis of PG E2 by human PMNL were measured at final drug concentrations of 1, 2·5, 5 and 10 μ g/ml. Reaction mixtures contained 2 × 10⁶ PMNL in a final volume of 1 ml HBSS. After incubation at 37°C/30 min, 1 ml of ice-cold HBSS was added to each tube and the tubes transferred to an ice-bath. After removal of PMNL by centrifugation the supernatants were assayed for PG E2 using a competitive binding radioimmunoassay (RIA) system (New England Nuclear Corp, Boston, Mass, USA). Results are shown in Table 1 and are expressed as p grams PG E2/10⁶ PMNL/30 min.

Clofazimine concentration	Spontaneous synthesis of PG E2 by PMNL	FMLP-stimulated synthesis of PG E2
Control (no Clofazimine)	$5.2 \pm 2.1 \ddagger$	13.0 ± 2.1
$1 \ \mu g/ml$ Clofazimine	6.0 ± 2.8	$25.0 \pm 5.6*$
$2.5 \ \mu g/ml$ Clofazimine	$8 \cdot 6 \pm 3 \cdot 2$	$52 \cdot 3 \pm 6 \cdot 5^*$
5 μg/ml Clofazimine	$14.0 \pm 3.5*$	$76.7 \pm 6.7*$
10 µg/ml Clofazimine	$25.1 \pm 5.0*$	$81.3 \pm 6.3*$

Т	à	b	le	1
1	а	U		

* P < 0.005 by comparison with the corresponding control (without clofazimine) systems.

 \dagger Results as the mean value in p grams PG E2/10⁶ PMNL \pm SEM of 6 experiments.

Clofazimine at all concentrations tested increased the spontaneous and especially the FMLP-stimulated synthesis of PG E2 by PMNL. Ingestion of 200 mg of clofazimine daily gives peak serum levels of $0.7-1 \mu g/ml$ and probably higher tissue concentrations¹² indicating that these effects may be operative *in vivo*. Solvent control systems which were included for each clofazimine concentration did not affect PG E2 synthesis. Likewise clofazimine *per se* did not interfere with the RIA for PG E2 as shown by the inclusion of control systems containing clofazimine only (no PMNL or FMLP).

PG E2 inhibits T-lymphocyte proliferation and antibody production.¹¹ Likewise pharmacological amounts of PG E2 or its poorly metabolizable analogues relieve nephritis and adjuvant arthritis in animals and eliminate immune complex arthritis.^{9, 10} Potentiation of PG E2 production by PMNL, monocytes and macrophages in response to pro-inflammatory stimuli such as leucoattractants and antigens, if operative *in vivo*, is a likely mechanism of clofazimine-mediated anti-inflammatory and immunosuppressive activity.

R ANDERSON

The Immunology Section Department of Medical Microbiology Institute for Pathology University of Pretoria RSA

84 Letters to the Editor

References

- ¹ Browne SG. 'B663'—possible anti-inflammatory action in lepromatous leprosy. *Lepr Rev*, 1965; **36:** 17–20.
- ² Hastings RC, Trautman JR. B663 in lepromatous leprosy. Effect in erythema nodosum leprosum. Lepr Rev, 1968; **39**: 3–7.
- ³ Karat ABA, Jeevaratnam A, Karat S, Rao PSS. Double-blind controlled clinical trial of clofazimine in reactive phases of lepromatous leprosy. *Br Med J*, 1970; **1**: 198–200.
- ⁴ Pfaltzgraff RE. The control of neuritis in leprosy with clofazimine. Int J Lepr, 1972; 40: 392–8.
- ⁵ Schulz EJ. Forty-four months' experience in the treatment of leprosy with clofazimine (Lamprene (Geigy)) Lepr Rev, 1972; **42:** 178–187.
- ⁶ Van Rensburg CEJ et al. Effects of clofazimine alone or combined with dapsone on neutrophil and lymphocyte functions in normal individuals and patients with lepromatous leprosy. *Antimicrob Ag Chemo*, 1982; **21:** 693–7.
- ⁷ Cline MJ. Drug potentiation of macrophage function. Infect Immun, 1970; 2: 601–5.
- ⁸ Brandt L, Svensson B. Stimulation of macrophage phagocytosis by clofazimine. *Scand J Haematol*, 1973; **10**: 261–4.
- ⁹ Zurier RB, Quagliata F. Effects of prostaglandin E₁ on adjuvant arthritis. *Nature*, 1981; 234: 304–5.
- ¹⁰ Zurier RB. Prostaglandins, immune responses and murine lupus. Arthritis Rheum, 1982; 25: 804-9.
- ¹¹ Fischer A et al. Role of prostaglandin E_2 in the induction of non-specific T-lymphocyte suppressor activity. *J Immunol*, 1981; **126**: 1452–5.
- ¹² Yawalkar S, Vischer W. Lamprene (Clofazimine) in leprosy. Lepr Rev, 1979; 50: 135-44.