The Pharmacology of Sulphetrone and Its Implications in Sulphone Resistance

ROBERT H. GELBER*

H. C. GOOI

M. F. R. WATERS

Leprosy Research Unit, National Leprosy Control Center, Sungei Buloh, Selangor, Malaysia

and

R. J. W. REES

Laboratory for Leprosy and Mycobacterial Research, National Institute for Medical Research, Mill Hill, London NW7 1AA

Spectrofluorometric techniques were utilized to quantitate dapsone (DDS) and \(\text{N}^4 \)-acetyldapsone (MADDS) contamination of a sulphetrone preparation used for leprosy in Malaysia between 1947 and 1951. Also plasma levels of DDS and MADDS following administration of a standard intramuscular dose of this preparation were studied. The preparation was contaminated with trace amounts of DDS but no MADDS. Following injection the plasma levels were substantial and suggested that sulphetrone was converted \textit{in vivo} to DDS. The importance of these findings to the problem of sulphone resistance is discussed.

Introduction

Sulphetrone (solapsone), a sulphone, was prepared in 1936 (Buttle \textit{et al.}, 1938) and subsequently attracted attention because of its antituberculosis activity (Brownlee and Kennedy, 1948) and low toxicity (Brownlee, 1948). Sulphetrone was first shown to be effective in the treatment of lepromatous leprosy in 1942 (Harkness and Brownlee, 1948) and was widely used for some 12 years (Dharmendra, 1950; Cochrane \textit{et al.}, 1949; Austin, 1950). However, it fell into disrepute because it is poorly absorbed in the gastrointestinal tract (Smith, 1949\textit{a}), causes pain following intramuscular injection, and was thought to act

* Request reprints from Robert H. Gelber, Chief, Infectious Diseases, United States Public Health Service Hospital, 15th Ave. and Lake St, San Francisco, California 94118 U.S.A.
Received for publication August 1974
against *Mycobacterium leprae* only because of contamination with dapsone (DDS) (Lowe, 1952) or conversion *in vivo* to it (Smith, 1959b). Deavin *et al.* (1967), utilizing a semiquantitative assay, demonstrated that sulphetrone was contaminated with 0.5-2% DDS.

A recent retrospective analysis by Meade *et al.* (1973) of the emergence of sulphone resistance among lepromatous leprosy patients at the National Leprosy Control Center, Sungei Buloh, Malaysia, showed an incidence of 8% in patients initially treated between 1947 and 1951 with sulphetrone, compared to an incidence of 2% in patients begun on DDS. Highly sensitive and specific spectrofluorometric techniques for the assay of DDS and its monoacetyl metabolite (MADDS) have now been developed (Peters *et al.*, 1970). We applied these methods to determine the amount of DDS and MADDS in the same sulphetrone preparation used earlier in Malaysia and also to determine plasma concentrations obtained in patients following the usual therapeutic dose of this preparation. It was hoped that information from these studies might prove useful in assessing the efficacy of other sulphone preparations, as well as different DDS regimens.

Methods

Two vials of aqueous 30% sulphetrone (Ph Lab Kuala Lumpur) were diluted serially with distilled water to 1/2500 and 1/5000, and the concentrations of DDS and MADDS determined fluorometrically (Peters *et al.*, 1970) in duplicate samples. This method was modified to avoid sulphetrone breakdown by omitting sodium hydroxide during the initial extraction.

Eight adult patients volunteered to discontinue all sulphones for two weeks. After this period a baseline urine was analysed for sulphone content by a modification of the procedure of Bratton and Marshall (1939), sensitive to 0.3 μg/ml. Five ml of the 30% sulphetrone preparation was then injected intramuscularly, and heparinized plasma was obtained generally just before and 4, 8, 24, 48, 72 and 96 h after administration. Plasma concentrations of DDS and MADDS were determined fluorometrically. No specimens were studied after four days because in Malaysia the standard practice had been to treat leprosy patients with 5 ml sulphetrone twice weekly.

Results

There was no (0.02 mg/ml) MADDS found in either of the two vials of sulphetrone studied. Duplicate specimens and at the two dilutions studied showed no greater than 1% discrepancy in the amount of DDS contamination of the sulphetrone preparation. DDS concentration in the two vials was 0.70 and 0.75 mg/ml.

Plasma levels of DDS and MADDS following a single intramuscular injection of sulphetrone in each of the eight patients studied are presented in Table 1.

Discussion

These studies confirm that sulphetrone is contaminated with trace amounts of DDS. The average plasma DDS concentrations found in subjects 24 and 48 h after sulphetrone administration were 93 and 78 mg/ml respectively. Twenty-four and 48 h after a 50-mg oral dose of DDS in patients from this institution, the mean
TABLE 1

MADDS and DDS plasma levels following intramuscular administration of 5ml 30% sulphetrone

<table>
<thead>
<tr>
<th>Patient (Wt in kg)</th>
<th>Substance</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian male (58.2)</td>
<td>DDS</td>
<td>—</td>
<td>90</td>
<td>80</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Chinese female (40.9)</td>
<td>DDS</td>
<td>0</td>
<td>100</td>
<td>90</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>0</td>
<td>70</td>
<td>70</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Chinese male (60.0)</td>
<td>DDS</td>
<td>10</td>
<td>90</td>
<td>90</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Chinese male (48.2)</td>
<td>DDS</td>
<td>10</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>20</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Chinese male (53.2)</td>
<td>DDS</td>
<td>10</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Malay male (52.0)</td>
<td>DDS</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>90</td>
<td>60</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malay male (48.0)</td>
<td>DDS</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>110</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Chinese male (48.0)</td>
<td>DDS</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>110</td>
<td>70</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Average</td>
<td>DDS</td>
<td>6</td>
<td>82</td>
<td>78</td>
<td>93</td>
<td>78</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>MADDS</td>
<td>11</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>46</td>
<td>28</td>
<td>20</td>
</tr>
</tbody>
</table>

Tests for urinary DDS concentration, sensitive to 0.3 μg ml, were negative for all patients before injection of sulphetrone.

Plasma levels were 260 and 128 mg/ml respectively (Gelber and Rees, unpublished results). Since plasma concentration of DDS has been found to be linearly related to dose (Ellard et al., 1971), certainly the 3.5 or 3.75 mg DDS contaminating each sulphetrone injection is too little to account for the circulating levels of DDS. Hence significant in vivo metabolism of sulphetrone to DDS must occur.

Patients treated with the intramuscular repository sulphone acedapsone (DADDS) in the usual dose of 225 mg every 77 days averaged 25 to 31 mg/ml DDS in the plasma just before the next injection (Murray et al., in press; Gordon et al., in press). As plasma levels of DDS in patients treated with sulphetrone in Malaysia on the average would not have fallen below 40 mg/ml, DADDS therapy of bacilliferous leprosy might similarly result in an unacceptable frequency of relapse with DDS-resistant *Mycobacterium leprae*. We therefore would be reluctant to recommend DADDS as monotherapy of lepromatous leprosy in areas where other alternatives are possible.
It has been demonstrated that 1-10 mg/ml DDS in plasma will prevent multiplication of *Mycobacterium leprae* in the footpads of mice (Shepard *et al.*, 1969; Ellard *et al.*, 1971) and rats (Peters *et al.*, 1972). Patients treated with sulphetrone maintained levels that were at all times above this minimal inhibitory concentration, and yet 8% of them relapsed with dapsone-resistant leprosy, which must be considered unacceptable. Thus it may be hazardous to extrapolate from levels of dapsone effective for preventing multiplication in the local self-limited infection in mice and rats to the treatment of the severe and progressive systemic disease that *Mycobacterium leprae* may cause in man, because of differences in bacterial load and hence the numbers of DDS-resistant mutants. Results from this study suggest that the currently fashionable low-dose DDS regimens may be hazardous.

Acknowledgements

We acknowledge the technical assistance of Mr Yeoh Chin Aik. Dr Gelber was supported by the University of California International Center for Medical Research through grant AI 10051 to the Department of International Health, School of Medicine, University of California, San Francisco, from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Public Health Service. Dr Gelber also acknowledges the support of the Institute for Medical Research, Kuala Lumpur, Malaysia, is jointly administered by the (British) Medical Research Council and the Malaysian Ministry of Health.

References

